课程目录:R语言机器学习学术应用培训
4401 人关注
(78637/99817)
课程大纲:

          R语言机器学习学术应用培训

 

 

 

 

R语言机器学习学术应用
基础
Theory: Features of time series data and forecasting basics

R Lab: time series objects (libraries of timeSeries, xts, & mFilters)

中级
Statistical Learning (SL):

(0.5 Hour) One-step forecasting: one-step ahead model fit

(0.5 Hour) Multi-step forecasting: recursive and direct methods

(6 Hours) Linear models: ARIMAs, ETS, BATS, GAMS, Bagged; 案例实做与写作范例

(5 hours) Nonlinear models: Neural Network, Smooth Transition, and AAR; 案例实做与写作范例

R Lab: libraries of forecast, tyDyn, vars, and MSVAR.

Research Issues: unemployment forecasting, predictability of exchange rates and asset returns.